Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors

Energy Savings Through Maintenance and Reliability Programs

Engineering & Design

Energy Savings Through Maintenance and Reliability Programs

Author:Henri Azibert

When analyzing maintenance or focusing on reliability, the goal is primarily on cost savings or production uptime. Yet, the proper maintenance and reliability of industrial equipment can be major contributors to energy savings. So, how does well-maintained and long-running equipment contribute to energy savings?

There are some obvious reasons as to why a reliability program will also save energy. A prevalent cause for premature failure of pumping equipment is not running a pump within its allowable operating range. It could have been oversized during the specification process, or the production needs have increased, or the service demands are variable; whatever the reason, the life of the pump is limited. A reliability effort to increase the life of the equipment will be to eithertrim an impeller, add additional equipment for the larger load requirements, or install a variable speed drive to adjust to the varying flow requirements. And as a result, seal life improves, bearing life is extended, cavitation damage is eliminated, all resulting in increased uptime… AND, energy savings!

Running as close as possible to thebest efficiency point(BEP) will, by definition, increase efficiency. Keeping the seals well lubricated, while bearings experience reduced loads, reduces friction and thus energy losses. Often overlooked is the fact that frequent repairs of equipment can result in lost energy. To replace parts, the system must be drained. This can be a pump and any length of pipe between suction and discharge isolating valves. In large equipment, it can be very sizable volumes that may require hours to drain. In the case of hot water, all the energy used to bring the water to its operating temperature will literally be going down the drain. Although a single incident may not be noticed, when repeated routinely, it will lead to significant losses.

Proper maintenance practices are crucial as well. Among many, let’s just focus on one simple aspect to illustrate the point:clearances. When maintaining or repairing rotating equipment, it is critical to pay attention to the clearances between rotating and stationary parts. If a clearance is not returned to its design point, and in some cases reduced, much energy can be lost. Here are some examples of where this is particularly relevant.

Impeller wear rings prevent the recirculation of high pressure discharge into low pressure suction. The smaller the clearance, the greater the efficiency. This of course requires proper centering of parts, close attention to tolerances, the right choice of material, and careful installation. Another important clearance to set properly in an open impeller pump is the space between the impeller and the casing or the back plate – depending on the impeller design. All excellent maintenance practices that have the effect of increasing efficiency reduces power consumption.

A common sealing piping plan isplan 11, which recirculates discharge pressure process fluid into the seal chamber. It is used to introduce circulation around the seal to dissipate frictional heat, or to increase the pressure to maintain the proper vapor pressure margin. A close clearance bushing is used to increase the pressure in the seal chamber and control the flow rate from the discharge. A brief example shows how the clearance between the shaft and the inside diameter of the bushing is essential in restricting recirculation flow. For a 50 mm shaft, to maintain a pressure differential of 2 bar, a diametral clearance of 2/10thof a millimeter results in a flow rate of 6.2 liters per minute. With a diametral clearance of 1/10thof a millimeter, the flow rate would be reduced to 0.8 liters per minute for the same pressure differential. (Source:Fluid Sealing Association Life Cycle Cost Calculator). Thus, with the reduced clearance, 5.4 liters per minute of process recirculation could be saved. On a continuous service, it represents eliminating the pumping of 2,838,240 liters or some 750,000 gallons per year. Multiplied by the number of pumps in the facility, the reduced clearance will result in substantial energy (and cost) savings. The other benefit of this good maintenance practice is that it also increases reliability of the mechanical seal by maintaining the proper vapor margin.

Similarly, in the case of Piping Plan 23, where a pumping ring circulates process fluid out of the seal chamber through a heat exchanger and back to the seal chamber, a bushing is also used to separate the seal chamber fluid from the hot process. Without proper clearance, process and seal chamber fluid get mixed, heat is transferred from the process to the seal chamber, loosing process energy, increasing cooling loads and reducing seal reliability. Yet another prime example of the interplay of proper maintenance, reliability, and energy savings.

And then there is leakage!Correct installation and maintenance of sealing products is not just limited to the occasional pump compression packing adjustment. It must be a constant and comprehensive attention to valves, flanges, heat exchangers, pumps, piping, and all pressure containing equipment. It must be a consistent and thorough maintenance procedure. It has been estimated that Leak Detect and Repair (LDAR) programs can reduce fugitive emissions by 40% to 60%, depending on the frequency of inspections, the process conditions and the fluid emitted. The amount of product lost to leaks is easily measured in hundreds of tons at a single facility. A good maintenance program that reducesfugitive emissionrates by just half will achieve considerable energy savings. And, with newer sealing technology, reduction by a factor of 10 is often achievable. (A good reference for the amount of product lost to the environment is Section 2.2. of the EPA-453/R-95-017 1995 Protocol for raybet 雷竞技 Leak Emission Estimates: Reduction of product leaks results in more output for same energy, or conversely, the same output with less energy.

Proper maintenance and reliability programs can reduce costs and increase up-time while also directly benefiting energy consumption.

Energy Assessment Standards

Related Articles

Related Whitepapers

Carlsberg taps into process water reuse with onsite treatment

Carlsberg brewery wants to cut its water use by 50% by 2030. The initiative, Zero Water Waste, is part of Carlsberg’s Together Towards Zero program.…

Water and Wastewater Industry Checklist for Variable Speed Drives

Resilience is the ability to cope with, and recover from, disruption and to anticipate trends and variability in order to maintain services for people and…

Overcoming energy efficiency challenges in the water and wastewater industry

Water demand is continuing to increase as the global population grows. Clean water is required by people for drinking, cooking, and washing, and by industrial…

Always-on Steam Trap Monitoring Yields 2.9x Return & Reduction of CO2 Emissions [Case Study]

In 2020, Trinity Manufacturing, a premier manufacturer of specialty agriculture and water treatment chemicals, engaged Everactive to help deliver on its safety, sustainability, and operational…


Leave a Reply

Your email address will not be published.

Join the #PumpTalk Community

By submitting this form, you are consenting to receive marketing emails from: raybet & raybet 雷竞技 , 2205-C 7th Street, Tuscaloosa, AL, 35401, // You can revoke your consent to receive emails at any time by using the SafeUnsubscribe® link, found at the bottom of every email.Emails are serviced by Constant Contact